Stable suppression of HER-2 gene expression using siRNA increases the lysis of human ovarian carcinoma cells mediated by NK-92 cell line.
نویسندگان
چکیده
The overexpression and amplification of HER-2 gene is associated with the malignant biological behavior of ovarian carcinoma and these tumor cells expressing elevated levels of HER-2 appear to be resistant to the cytolysis of NK-92. In this study, we analyzed the cytolysis effects of NK-92 on human ovarian carcinoma cells (SK-OV-3) after inhibition the expression of HER-2 mRNA by siRNA. Human ovarian carcinoma cell line SK-OV-3 was transfected with siRNA-hairpin expression retroviral vector (HER-2/siRNA) designed to target HER-2 mRNA. A negative control was established utilizing a vector lacking the antisense component (HER-2/negative). The expression levels of HER-2 gene in SK-OV-3/siRNA, and SK-OV-3/negative cell lines were evaluated by semi-quantitative RT-PCR and immunohistochemistry. The growth and the early apoptosis of these cells were assayed by MTT and flow cytometry, respectively. The cytotoxicity of NK-92 against target cells was investigated by LDH. SK-OV-3/siRNA and SK-OV-3 cells were injected subcutaneously into BALB/c nude mice respectively and NK-92 cells were intraperitoneally injected to examine the anti-tumor activity in vivo. The stable cell line (SK-OV-3/siRNA) with a persistent silence of HER-2 was established. The inhibited expression of HER-2 gene was exhibited by semi-quantitative RT-PCR and immunohistochemistry. The suppressed proliferation and the elicitation of early apoptosis cells were observed in SK-OV-3/siRNA cell line. NK-92 cell line can efficiently lyse the SK-OV-3/siRNA cells in vitro and significantly inhibit the growth of tumors xenografted with SK-OV-3/siRNA cells. Suppression of HER-2 gene expression using siRNA combined treatment of NK-92 presents a new strategy for NK-92 biological treatment on the HER-2 expression epithelial tumors.
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملInduction of Heme Oxygenase -1 By Lipocalin 2 Mediated By Nf-Kb Transcription Factor
Purpose: Effect of lipocalin 2 on the expression of heme oxygenase I , II and NF-kB transcription factor was the purpose of this survey. Materials and Methods: Lcn2 was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing lipocalin 2. The presence of lipocalin 2 gene in these cells was confi...
متن کاملRNA secondary structure and qRT-PCR analyses pertained to expressed anti-CD25 CAR in NK-92 cell line
Background and Objectives: Tumor-infiltrating regulatory T (TI-Treg) cells perform the significant function in cancer immune escape. In this study, the third generation CAR construct was designed against human CD25 antigen, the significant cell surface biomarker of TI-Tregs. Methods: Initially, the construct of anti-CD25 CAR was designed. Using RNAfold web server, the RNA secondary structure wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2008